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2. Modality choice is affected by deprivation. The London
Travel Demand Survey (LTDS) [1] reports that income is
strongly related to public transport use. Compared to rail
and tube journeys the rate of bus use tends to increase as
household income decreases, and conversely, the rate of
car use tends to increase with higher household income.
Additionally, the survey finds that mode choice is related
to age and disability. Thus, we expect there to be a popu-
lation bias in rail users related to the level of deprivation
in their home areas.

3. Diversity increases well-being. We expect diversity in
the places people visit to reflect the diversity of their so-
cial ties, since the more diverse are ones contacts, the
less likely they are to be concentrated in a small number
of places. [5] has shown that individual-level social and
economic benefits of social-network diversity scale to the
population-level, therefore we expect to see a relationship
between diversity of travel behaviour and IMD scores.

Processing the data. We begin by constructing an N ⇥ N
matrix F such that N is the number stations in the dataset
and Fi,j is equal to the average daily number of unique users
who have made a trip between stations i and j. We do not
take into account direction of travel so Fi,j = Fj,i. We also
find Mi, the set of users who reside near to station i. Since
users in the dataset are anonymous we do not know where
they live, so instead we infer their home stations using a
ranking method that exploits the regularity of human travel
patterns [6]. For each user u we rank station o based on the
frequency with which user u has departed from o. In order to
distinguish genuine London residents from occasional visi-
tors we prune trips not departing within the morning peak
period, 6:30am to 9:30am, on the assumption that the vast
majority of journeys in this period will be commutes from
u’s home to a place of work. In so doing, we also avoid
counting departures from u’s other frequented stations, such
as work place in the evening. The downside is that we may
exclude residents whose main use of the rail network is not
for commuting. For every user we then compute a ranking
vector Ru = [r1, . . . , rN ], where rk is the number of times
u has departed from station ok (with o1 being the most fre-
quently visited origin station). We then assign users a home
station according to the following set of rules applied in se-
quence: (a) if r1 ⇤ 2 (the user’s most visited origin station
has been visited no more than twice in a whole month), the
user is not assigned a home station; (b) if r1/r2 > 0.5, as-
sign o1 as home station; (c) if r1/r2 ⇤ 0.5 and r2/r3 > 0.5,
assign both o1 and o2 as home stations; (d) otherwise, the
user is not assigned a home station. Note that up to two
stations can be designated a home station for a user, since
in some parts of London there may be more than one sta-
tion within equal distance from a user’s residence, and the
choice of which one to depart from may depend on factors
which vary day to day. Finally, mi = |Mi| is the number of
users who have i as a home station. The above steps discard
76% of users whose travel records do not reveal any prefer-
ential origin station (case (d)), but this still amounts to more
than 1.2 million users.

Metric for hypothesis 1. Next we derive the first feature
which involves using a gravity model to estimate the num-
ber of travellers moving between each pair of stations. First
introduced by Zipf in 1946 [21], gravity models rest on the
hypothesis that the size of flow between two areas is pro-
portional to the mass (i.e., population) of those areas, but
decays as the distance between them grows. The model
has been successfully used to describe ‘macro-scale’ inter-
actions (e.g., between cities, and across states), using both
road and airline networks [3, 8] and its use has extended to
other domains, such as the spreading of infectious diseases
[2, 20], cargo ship movements [9], and to model inter-city
phone calls [11].

Here we posit that a gravity model can be used to estimate
passenger flow at the intra-city level. The model takes the
form:

F est
i,j = g

mimj

d2i,j
(1)

where F est
i,j is the estimated flow, or number of users mov-

ing between stations i and j, g is a scaling constant fitted to
the data, and di,j is the distance between them, for which
we use the mean travel time between i and j computed from
the transit data. Flows between areas with large mass (large
number of home users) and at short distances are predicted to
be large, whereas flows at longer distances or between areas
with low mass are predicted to be small. Overall, the correla-
tion between the observed traffic flows and gravity model es-
timates, measured with the Pearson Correlation Coefficient
(PCC), is as high as .72, which suggests that overall the
gravity model provides a good description of the movement
of passengers between stations, but also that there is still
a significant amount of variation not accounted for by the
model.

We posit that this unexplained portion is due to prevailing
socio-economic factors, thus, we are interested in where the
model fails to fit well, that is, the cases where the residual
(prediction error) between the observed and estimated edge
weight is high. For example, the residual between observed
and estimated flow between London Bridge and Canada Wa-
ter, two areas with similar IMD scores, is just 7.9. Con-
versely, for Liverpool Street and Bethnal Green, which are
a similar distance apart but with very different IMD scores,
the residual is �1074.742. Figure 1(a) shows the cumula-
tive distribution of the mean residual at each station. We
see that not only is there an acute tendency for the grav-
ity model to overestimate, but also a significant number of
stations exhibit a large negative mean residual. As param-
eters in our classification model, for station i we compute
the mean (Equation 2) and standard deviation (Equation 3)
of the absolute residual on the edges connected to i:
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(c) SVM Scores

Figure 3. Graphical representation of classification scores.

Precision Sensitivity Specificity
Composite .805 .733 .810
Income .705 .729 .733
Employment .694 .701 .718
Health .779 .736 .648
Housing .779 .662 .818
Crime .761 .756 .769
Liv. Env. .902 .793 .928
Education .644 .723 .615

Table 4. Classification scores for SVM

and specificity of 0.5. From the results we can see that the
most easily predictable form of deprivation is the Living En-
vironment component. Even LR1 performs well here, with
an R2 of .521 indicating that a large proportion of the vari-
ation in Living Environment deprivation is explained by a
linear relationship with the station features. For LR1 in this
domain, the coefficient of Gµ is negative, which shows that
this model expects deprivation to increase as this variable
decreases. Recall that Gµ is the mean of the absolute value
of residuals, but from Figure 1(a) we see that the distribution
of residuals is heavily skewed toward the negative, so larger
values of Gµ correspond to overestimates. This means that
the more the gravity model overestimates the flows in and
out of a station, the more likely that station is in a deprived
area. Therefore, this supports our hypothesis that depriva-
tion may represent a restriction to travel, although we can-
not infer a causal link. G� has a positive sign, meaning that
deprivation tends to increase as the variance in gravity esti-
mation error at a station increases.

Overall, the best results come from LR2 and SVM. For the
composite IMD score, SVM correctly identifies high depri-
vation 80.5% of the time, and correctly identifies low depri-
vation 81% of the time. Interestingly, LR2 achieves higher
specificity in the composite score, as well as higher sensitiv-
ity than SVM in Living Environment, Housing, Crime and
Education, suggesting that it may be pertinent to test a mixed
classification model in order to achieve the best possible re-
sults. That LR2 and SVM both outperform LR1 indicates
that the relationship between deprivation and the station fea-
tures is predominantly nonlinear. A pleasing result is that

scores are fairly high across all domains and the R2 values
for LR2 suggest that station features explain a large propor-
tion of the variation in deprivation. This demonstrates the
potential for identifying specific kinds of problems, rather
than just an overall indication of community well-being.

In summary, the results offer some support for our hypothe-
ses - that deprivation is related to flow size, modality choice
and diversity of connections, albeit in a complex non-linear
fashion.

DISCUSSION
In this section we begin by discussing the main contributions
and implications of our work, before examining the its limi-
tations and proposals to extend the research.

Implications
This work adds to the growing literature exploring the ways
in which ubiquitous technologies can be used to unobtru-
sively track the well-being of communities [5, 10, 12, 16,
17]. We demonstrated a significant link between census area
measurements of deprivation in multiple domains, and pat-
terns of passenger flow in public transport systems. More-
over we have shown that the relationship between passen-
ger flow and urban deprivation is strong enough to build a
classification model that uses features extracted from flow
data to identify areas of high deprivation. In the spirit of
‘smart-cities’, predictions derived from transit data could
form an element of a ‘city dashboard’ style application3,
providing real-time information to city planners, policymak-
ers and community members. By providing an early warn-
ing, such a tool would dramatically reduce the time frame
within which local authorities identify areas of high depri-
vation, thereby increasing the efficiency with which limited
resources are allocated to regeneration and renewal initia-
tives, and moreover, potentially limiting the severity of the
deprivation.

The ability to identify well-being and inequality could also
benefit communities by enabling residents to asses the ef-
fects of regeneration projects and hold local authorities to
3e.g.,˜http://citydashboard.org/london/

6
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2. Plan 

§  Method 
•  Compute metrics per unit of analysis 

•  Regression analysis   
u  economic deprivation, well-being, life 
expectancy, child obesity, gang crime 

•  Validation  
u  Greater London, Birmingham, Greater 
Manchester, Liverpool, Leeds, Newcastle 
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3. Regulate 

§  Can we support data-driven 
policy-making, to help regulate 
p2p economy services? 
•  Under what conditions is there 
Airbnb presence? 

•  How does Airbnb presence grow over 
time? 



3. Regulate 

§  Method 
•  Compute metrics per unit of analysis 

•  Modelling 
u  Airbnb offerings, demand, price 

•  Validation  
u  Greater London 

u  Austin, Los Angeles, New York City, New 
Orleans, Oakland, San Diego, San 
Francisco, Seattle 
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2012 2013 2014 2015
Indip. var p-val � p-val � p-val � p-val �

Hotel HotelA 0.00 -0.02 ** -0.09 . -0.08
Geography Dist *** -0.32 *** -0.19 * -0.12 * -0.13
Attractiveness 4sq *** 0.20 . 0.12 -0.06 -0.11

TrnspScr -0.07 . -0.09 0.05 0.02
AttrPOIs 0.06 0.04 -0.04 -0.01

Demographics Y oungDen *** 0.27 *** 0.32 *** 0.31 ** 0.24
Income 0.05 *** -0.21 *** -0.42 *** -0.62
Employment ** -0.12 -0.02 0.07 0.06
Ethnics *** 0.17 ** 0.12 0.01 0.02
Bohemian -0.03 -0.01 0.00 -0.01
MeltingPox ** -0.09 ** -0.12 -0.03 -0.02
Education 0.07 0.05 -0.10 ** -0.25

Housing LivEnvir . 0.06 0.03 0.03 -0.01
GreenSpace -0.02 0.01 0.01 0.00
DwCTFtoH 0.03 * 0.13 ** 0.21 0.07
HousesRatio -0.07 . -0.13 0.02 -0.15
OwndDwelRatio -0.11 *** -0.32 *** -0.64 *** -0.59
MedHPrice *** 0.20 * 0.13 0 .04 0.04
PropsSld . 0.05 0.03 *** 0.19 *** 0.20
Adjusted R-squared 0.84 0.80 0.70 0.54
Moran’s test 0.03 0.02 0.04 0.05

Table 5: Temporal analysis of Airbnb adoption.

In large cities, tourists tend to congregate in central areas,
and residents often cannot cope with the increasing demand.
Local governments are studying strategies for distributing
tourism across the entire city. Our analysis has shown that,
as opposed to hotels, Airbnb listing have a wider geographic
coverage (Section 3) and, consequently, naturally contribute
to the load balancing of tourists across the city.

4. Concentration of short-term rentals has to be avoided. If a
neighborhood has a critical mass of short-term rentals, then
its character is bound to be compromised. Within the frame-
work we are envisioning, municipalities are able to limit the
number of sharing rights.

Recommendation 2: Transferable sharing rights should be allo-
cated while considering four main factors: future consequences
for adoption, development of local economies, sustainability of
tourism, and avoidance of short-term rental “hot-spots”.

What. Sharing economy platforms are quite different from each
other, and regulations should be tailored to each situation. The taxi
industry and the hotel industry do not have the same legal frame-
work; neither should Uber and Airbnb. Additionally, as we have
seen in the case of Airbnb for different categories of listings, im-
portant differences exist even within the same platform. It is there-
fore crucial to understand what to regulate. Based our findings, we
think that listings of rooms and houses should be regulated differ-
ently because:

1. The socio-economic conditions are different. As opposed to
houses, rooms tend to concentrate in low-income yet highly
educated part of town (likely students) with a predominant
non-UK born population (Section 6.2). Houses, instead, tend
to be in wealthy areas.

2. The social consequences are different. Central neighborhoods
are increasingly becoming places in which properties are rented
by wealthy people (Section 6.1). As a consequence, in the
long term, the social fabric of those neighborhoods is likely
to be compromised, if the situation is left unregulated. Stud-
ies have shown that it takes time (years) to build what Put-

nam calls “social capital” among neighbors [13], and hav-
ing a critical mass of short-term renters does not help. Also,
happiness might be affected, as a good predictor of it is the
number of people one personally know and regularly meet in
his/her neighborhood [8].

Recommendation 3: The terms of transferable sharing rights
should change depending on whether a room or an entire apart-
ment is rented.

7.2 Enforcing
Regulations are effective only if they are enforced. An important
part of such an enforcement is to be able to identify offenders. One
way of doing so is to automatically spot anomalous behavior from
data, as retail banking usually does. By matching Airbnb data with
census data, we have been able to find that Airbnb rooms tend to be
offered disproportionately in areas where people rent (Section 6.3).
Tenants engaging in such short-term letting almost certainly violate
general rental agreement policies on subletting. One could easily
build an index of “subletting violation” by cross-correlating the two
data sources of Airbnb rentals and house ownership. However, this
would be possible only if municipalities incentivize the creation of
a data sharing ecosystem. Sharing economy companies can and
should share part of their data. This data should be sufficiently spe-
cific to inform policies, but also fairly vague to protect the privacy
and safety of customers.

Recommendation 4: Municipalities should incentivize the cre-
ation of a data sharing ecosystem.

7.3 Refining
After defining and enforcing regulations, a city needs to engage in
a dialog with citizens. Sharing economy platforms could provide
data upon which the city can evaluate the impact of the short-term
rental market (e.g., the increasing demand on public services) and
can refine its response to it.

Recommendation 5: Municipalities should constantly evaluate
the impact of short-term rentals based on data, and they should
accordingly refine their regulations.
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